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Abstract 

A Minkowski-lattice version of quantum electrodynamics (or rather its simplified version, with 
matter described by a scalar field) is constructed. Quantum fields are consequently described in 
a gauge-independent way, i.e. the algebra of quantum observables of the theory is generated by 
gauge-invariant operators assigned to zero-, one-, and two-dimensional elements of the lattice. 
The operators satisfy canonical commutation relations. The uniqueness of representation of this 
algebra is proved. Field dynamics is formulated in terms of difference equations imposed on the 
field operators. It is obtained from a discrete version of the path-integral. The theory is local and 
causal. 
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O. Introduction 

Standard difficulties of  quantum field theory (renormalization, regularization of  the prod- 

uct of  fields at the same space-time point, etc.) are augmented in the case of  gauge fields 

by the gauge-fixing problem. Having at our disposal no satisfactory non-perturbative de- 

scription, one commonly uses non-physical objects like ghosts, bare particles, etc. 

In the present paper we show how to solve completely the gauge-invariance problem, 
at least at the level of  lattice approximation, for the theory of interacting scalar charged 

field ~p and the electromagnetic field, described by the vector-potential A u. We use the 

real-time lattice, not its euclidean version. This way we maintain the essential structure 
of  the Quantum Field Theory: the local character of  quantum field operators fulfilling the 
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canonical commutation relations, local time evolution given by a unitary transformation, the 
causal (light-cone) character of field dynamics. As a result we obtain a discrete version of 
an algebraic Quantum Field Theory, where, similarly as in Haag formulation (see [7]), the 
quantum field is described in terms of algebras of local observables, assigned to bounded 
regions of the lattice. The quantum dynamics is formulated in terms of difference equations, 
which have to be satisfied by the field operators. The equations have causal character and the 
initial value problem is well posed. In particular, operators describing electric and magnetic 
field fulfill the Maxwell equations with the continuous operators div and curl replaced by 
their obvious lattice analogs. 

Of course, the problem "how to remove the cut off introduced by the finite lattice spacing 
and to construct an exact, continuous model of interacting gauge-fields?" is several orders 
of magnitude more difficult. We do not discuss it here. But we believe that, due to its simple 
structure, our model may be very useful for understanding the fundamental structures of 
the quantum gauge field theory. 

Our construction is based on the following, heuristic point of view, which we found 
extremely useful as a guiding principle. Consider two different Cauchy surfaces: ~'init : 

{X 0 : tinit} and ,~'fin : { x0  = tfin} in the Minkowski space-time M. The classical dynamics 
gives the relation between the initial data o n  ~E'init and the final data on Sfin. We want to 
define its quantum counterpart by the path integral 

1 exP(h  /~d4y ) i-ida(xfin) d4)(Xfin)d~p(xfin) (I/tfin I Pinit) = N f ~fin f q/init xfi n 

× I--I dA(y)d4)(y)d~p(y) I--I dA(xinit)d4)(Xinit)ddp(xinit)" (0.1) 
Y Xinit 

Here, the initial (resp. the final) quantum state P is represented by a "wave function" ~P de- 
pending on initial configurations A(xin i t )  and 4)(Xinit) (resp. final configurations A(xf in )  

and 4)(xfin)). The functional integral may be thought naively as being performed over 
three groups of variables: initial configurations (A (Xinit), 4)(Xinit)),  intermediate configura- 
tions (A (y), 4)(Y)) and the final configurations (A (Xfin), 4)(Xfin)). Performing the integration 
over the first and the second group, with the last one being fixed, should give us the unitary 
evolution kernel U(~'fin,~'init ) from Einit  to ~'fin: 

if ( i f )  U(ITlin,Sinit)k//init = ~ exp ~ /;d4y OinitI-IdA(y) d4)(y)d~b(y) 
Y 

x 1-I dA (Xinit) d4) (Xinit) d~ (Xinit). (0.2) 
Xinit 

The goal of the present paper is to construct a rigorous, discrete version of the above func- 
tional integral. For this purpose let us imagine that the region of space-time contained be- 
tween ~V'init and ,Vfin is divided into small four-dimensional hypercubes. This discretization 
induces also a partition of both ,~'init and ,~'fin into three-dimensional cubes. In a discretized 
version of the theory the quantum state on any 2? will be defined as a wave function depend- 
ing on a discrete number of degrees of freedom related to those three-dimensional cubes. We 
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define the physical quantum states as those, which fulfill the discrete version of constraint 

equations, relating the divergence of the electric induction field to the electric charge carried 

by the matter field (see [4] and the discussion therein). At the level of the continuous theory 
this constraint is described by Eq. (1.9) and by Eq. (3.12) in the discrete version. This re- 
quirement implies that the physically admissible wave functions have to be gauge-invariant 

on Z" s. Hence, they can be considered as functions of a complete set of gauge-invariants. 
The first step of our construction consists in organizing such gauge-invariant functions into a 

Hilbert space. This way we obtain a lattice version of gauge-invariant quantum kinematics. 
To define the dynamics of such a theory we have to pass through the following three 

steps: 

(1) We discretize the action on the lattice. Since the action does not change under gauge 
transformations, it can also be expressed in terms of a complete set of gauge-invariant 

observables. 
(2) We have to remove from (0.2) an infinite factor, resulting from the integration over the 

gauge parameters, and to leave only the integration over "true degrees of freedom". 

This has to be done not only for intermediate configurations (A(y), ~b(y)) but also for 

the initial configurations. This way the initial arguments of the evolution kernel defined 
by (0.2) match the (gauge-invariant) arguments of the initial wave function representing 

the quantum state of the system. 
(3) Since both the initial wave function and the Lagrangian are gauge-invariant, we obtain 

from (0.2) a gauge-invariant final wave function representing the physical quantum 

state. 
The integral we use in the second step of this procedure is, in fact, defined on the "gauge- 

orbit space", i.e. over the quotient of the configuration space modulo the action of the gauge 

group. There have been many proposals to define a natural measure on this space. In the 

present paper we use the measure proposed in [19]. But we prove in Section 4.3 a theorem 
about the uniqueness (up to equivalence) of the irreducible representation of the observable 
algebra obtained this way. This result fully justifies, in our opinion, the correctness of our 

approach. 
It turns out that the dynamics defined this way splits in a natural way into a superposition 

of the "kinetic" evolution and the "potential" evolution. When the time-spacing r tends to 

zero, the Trotter formula gives us the (spatially discretized) Hamiltonian, which is a sum 

of the kinetic and the potential energy of the field. 
Mathematically, our construction is based on a lattice approximation for gauge fields 

(see [8,10]) where, like in the continuum theory (and unlike in Wilson's approach, cf. [ 18]), 
the gauge potential A is described by Lie algebra (not Lie group) elements assigned to 

the one-dimensional elements ("links") of the lattice. As a consequence, also the electric 
induction field Dk becomes a self-adjoint operator with continuous spectrum - like in the 
continuous version of the theory. However, the "longitudinal part" of the electric induction 
field, corresponding to electric charges, should have a discrete ("quantized") spectrum. 
In our construction this phenomenon is due to the gauge invariance of the physical wave 
functions. As will be seen in Section 4, the gauge invariance implies the compactification of 
some degrees of freedom of the field. They are no longer described by an R 1-variable but by 
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a U(1)-variable. This non-trivial topology of the reduced configuration space is responsible 
for the quantization of the corresponding conjugate momenta, which turn out to be exactly 

electric charges, carried by the matter field. Reducing consequently both the Hilbert space 

of quantum states and the Feynman kernel with respect to the gauge group, we end up with 
the gauge-invariant version of the theory, described essentially in terms of the quantities 
arising in its continuous version (cf. results obtained in [ 14,15] for the continuous, spinorial 
electrodynamics). 

The paper is organized as follows. In Section 1 we define the model. In Section 2 we 
present our lattice approximation and reduce it with respect to the gauge group. In Section 3 

we show how the classical dynamics of the model may be completely described in terms 

of a complete system of gauge invariant observables. Also, we prove the causality of the 

dynamics. In Section 4 we construct the Hilbert space of (gauge-invariant) quantum states of 

the field, i.e. we find the representation of the reduced canonical commutation relations. In 
Section 5 we derive the quantum dynamics of the model from the gauge-invariant version of 
the Feynman integral, with few more technical calculations postponed to Section 6. Finally, 

in Section 7 we give an equivalent formulation of the theory, in terms of the configuration 
variables only, without any use of the canonical momenta. 

We consider the present result as an introductory step towards the construction of the 

exact spinor electrodynamics on a lattice, which we are going to present in another paper. 

1. Continuous version of the theory 

1.1. Definition of  the model 

We consider the theory of a complex-valued matter field q~ interacting with the electro- 

magnetic field represented by the potential A u. The theory is defined by the Lagrangian 

/2 = -W(l~bl 2) - ½-~u~DUqb - 14a#vj f f#v ,  (1.1) 

where 

e 
D#qb = Otzd p + i -~ AtL¢, fur  -=- 3uAv - OvAtz, (1.2) 

and V is a function of a real variable (e.g. the Higgs potential). To simplify the formulae we 
will denote by g = e/h  the electromagnetic coupling constant. The metric tensor is equal to 
guy = d i ag ( - l ,  1, 1, 1). The gauge group U(1) acts on the space of field configurations as 
follows: 

q] ---- e-i~'qL "4u = alz + (1/g)O~;~. (1.3) 

Variation of the Lagrangian (1.1) with respect to the matter field leads to the second-order, 
non-linear Klein-Gordon equation 

DuDtZq5 - 2 V~b = 0 (1.4) 
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for the matter field, whereas variation with respect to the gauge potential gives the Maxwell 
equation (we use Gauss system of units). 

Ovf tz~ = - g  Im (q~ DUdp) , (1.5) 

with the right-hand side being the electric current ju  carried by the matter field 4~. 

1.2. Gauge freedom reduction 

Configurations which differ only by a gauge transformation are physically equivalent. 
To describe the "true degrees of freedom" of the field we have to pass to the quotient space 
with respect to this equivalence. This may be done, e.g. by a gauge-fixing. For our purposes 
we use, however, a different description, namely a description in terms of the so-called 
hydrodynamical invariants (see [3,11,8]) 

1 _ 1 ~ D q0 =A~+~0u(a rg ~b ) .  
R---- [q~[, vu ig ]~[ u kb[ (1.6) 

Inserting these invariants in Eqs. (1.4) and (1.5) leads to the following field equations: 

O~OlZR -- 2VtR = g2vuvUR , Ovf  ~tv = -g2R2vlZ.  (1.7) 

The term "hydrodynamical invariants" is justified by the fact that (1.7) may be interpreted 
as the equation of motion for a charged fluid of density R 2 and velocity v u, having a 
non-standard constitutive equation which is implied uniquely by the function V (see [3]). 

For field configurations with non-vanishing q~, the values of the hydrodynamical in- 
variants enable us to reconstruct the field configuration (q~, Au) uniquely up to a gauge 
transformation and the field equations (1.7) are equivalent to the original equations. For a 
generic configuration, vanishing of 4~ along a two-dimensional world sheet implies that the 
field v u carries a vortex, i.e. the singularity of the curl of v (see [3,1 l]). The vortex has to 
fulfill the Dirac's quantization condition (see [6]). Under this condition, the reconstruction 
(up to a gauge transformation) of the field configuration from the invariants is, again, possi- 
ble. There is a conservation law for the vortices. Hence, describing field dynamics, we have 
to take into account the "string-like" degrees of freedom carried by the vortices. This is 
relatively difficult in the continuous version of the theory, but may be done in a completely 
satisfactory way in its discretized version. 

1.3. Phase space o f  initial data 

Given a Cauchy hypersurface {x ° = const.}, the initial data for the theory are described 
by the values of the fields ~b, At, and their conjugate momenta 

0£ 
Jr o = 28{00~ ~--~__0£ _ D0q~ ' pOU _ 0{8oAu}-- _ _ f o u  = fo~ (1.8) 

on the hypersurface. The factor 2 in the definition of Jr ° appears, because 

7r ° = Re 7r ° + i Im Jr °, 
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where 

Rest o _ Of_, 
a(~0 Re4,) 

is the momentum conjugate to Re q~ and analogously for the imaginary part. 
Vanishing of the momentum p00 (Dirac's primary constraint) implies the reduction of the 

phase space with respect to A0. This way we obtain the reduced phase space described by 
the quantities (~b, Ak, Jr O, pOk), k = 1,2, 3. There remain, however, secondary constraints, 

implied by the zero component of the field equation (1.5): 

(1/g)Okp Ok -- Im (770~b) = 0 .  (1.9) 

It is easy to see that the above constraint is equivalent to the statement that initial data, 
which differ only by a gauge transformation on the Cauchy hyperplane are equivalent. The 
naive proof of this statement consists in reparameterizing the initial configurations (4~, Ak) 
by the invariants (R, vk) and the phase of the matter field ct := arg q~. This is a point trans- 
formation in the (infinite dimensional) symplectic space of Cauchy data. The corresponding 
transformation for the momenta can be obtained by rewriting the pre-symplectic form in 
terms of new variables (cf. [5,9]). Using (1.6) and integrating by parts we obtain this way 

(Re Jr°)~ (Re 4~) + Im(zr°) ~ (Im ~b) + p°k6Ak 
= 1 (fcO~c~ + zrOS(b) + pOk6A k 

=(~OkpOk--Im(#O4~))3a+Re(fcOqb)~--ff f f+pOk3vk--~Ok(pOk3a).  (1.10) 

The last (boundary) term vanishes when integrated over the entire Cauchy hyperplane. 
Hence, the gauge-invariants (p0k, Re(5.040) are the momenta canonically conjugate to the 
invariants (vk, log R), whereas the vanishing left-hand side of (1.9) becomes the momen- 
tum canonically conjugate to the (completely arbitrary) phase of the matter field 4~. The 
secondary reduction yields therefore the phase space described by the gauge-invariant, 
unconstrained observables (pOk, Re(z?0~b), Vk, log R). Knowing them, it is again possible 
to reconstruct uniquely (up to a gauge transformation) the entire non-reduced initial data 
(pOk, zoO, ak , cb ). 

The above, naive picture may become a rigorous result if we also describe the topological 
degrees of freedom carried by vortices corresponding to zeros of the matter field ~b (see [ 11 ] 
for the case of electrodynamics and [ 12,13] for the case of a non-abelian gauge group). In 
the present paper we construct the lattice version of this rigorous result. 

2. Lattice approximation 

2.1. Structure of  the lattice 

We construct the approximation of this theory on a four-dimensional lattice A in Min- 
kowski space. We recall that the metric tensor is diag(-1,  1, l, 1). As A, we take the 
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Caaesian product of  the three-dimensional, cubic lattice 27 and the discrete time axis T. 

Thus, the lattice sites are the points x = ( rn  °, an I , an 2, an 3) c ~4, where r denotes the 

lattice spacing in the time direction, a denotes the lattice spacing in the space directions and 
n = (n °, n I , n 2, n 3) c 774 is a point with integer coordinates. Sites of  A will be denoted 

by x . . . . .  links (x, x + /2)  . . . . .  plaquettes (x;/2, ~) . . . . .  where/2 is a vector of  length a(/~) 

(i.e. r for # = 0 and a for the space dimensions) and direction of  the oriented/zth axis. We 

adopt the following conventions for summation ranges: 

# ,  v = 0 ,  1 ,2 ,3 ,  k , l  = 1 ,2 ,3 ,  

/2, = 6,-6, i , - i ,  L - L  L - L  L i =  

We will begin with a spatially bounded lattice Z'. The evolution of  the field over such a lattice 

is not uniquely determined by the evolution equations unless we fix boundary conditions 

for the field in an appropriate way. Here, we do not impose any non-physical (e.g. cyclic) 

boundary conditions but we only fix the value of  the field on the external sites and links 

of ~ .  

There is a natural, inductive relation between the theories obtained for Z'l and Z'2, 

when Z'l C 2'2. Using this relation, as a last step of  the construction of the field theory, we 

may pass to the inductive (thermodynamic) limit and construct this way the corresponding 

theory for the complete (unbounded) lattice 774. 

2.2. Field configurations on the lattice 

We will represent the fields (~, Au) on the lattice in the following way. The matter 

field will be represented by its complex value q~x at every site x. The gauge field will 

be represented by the mean value Ax,x+t'~ ~ u(1) = ~l of  the component Au of  the 

electromagnetic potential, on the link (x, x -I-/2). 

The gauge group of  the theory is described by real-valued functions of lattice sites: 

~.x 6 u(l) = ~l .  A gauge transformation is defined as a discrete version of  (1.3): 

g a ( # )  (2.1) 

The description of  the gauge potentials and gauge transformations in terms of  elements 

of the Lie algebra u(1) = ~1 and not the Lie group U(1), has been proposed in [10]. 

Heuristically, such a description was motivated by the geometric structure of the theory: for 

each lattice link (x, x + /2 )  it is possible to choose an internal gauge transformation (i.e. a 

gauge which is trivial on the link's ends) which makes the corresponding Au constant on 
the link. In the lattice approximation of  the theory we want to keep this property. Hence, we 

describe the gauge field by this constant value Au, instead of  replacing it by its truncated 
value e i g a ( t z ) A u  . 

To remain consistent with the above picture, gauge transformations on the lattice have 

to be considered as restrictions of  continuous gauge transformations to the lattice sites. 
Therefore, it does make a difference whether we gauge the field at the point x by 0 or 
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by 2zr, because, after interpolation of the transformation to the entire link (x, x +/2) ,  the 
resulting value of Ax,x+f~ will be transformed in a different way. 

We define the following lattice expressions for the covariant derivative Duq~ of the matter 

field and for the curl fur  of the gauge field: 

1 
(DdP)x'x+fz -- a(tz) (exp (iga(Iz)Ax,x+fD (bx+fL -- ~bx), 

1 
(a(Iz)Ax,x+fz + a(v)Ax+f~,x+fz+O (2.2) fx;i~,~ -- a(Ix)a(v) 

+ a(lz)Ax+iz+~,x+f, + a(v)Ax+f, ,x).  

It follows immediately that f ,  being the lattice curl of A, is invariant with respect to gauge 

transformations (2.1) and that (D~b)x,x+iL behaves like 4~x under these transformations. 

2.3. Reduction of  gauge freedom 

Physical field configurations are described by the space of gauge orbits, i.e. the quotient 

space of the above field configurations modulo gauge transformations. We will use different, 
equivalent parameterizations of this quotient space. Below we give a list of four such param- 

eterizations. In fact, we need only the first and the last of them. The first parameterization 

is closely related to the gauge-dependent parameters (~b, A). The last one gives the final set 
of parameters, which we use to describe the theory. The easiest way to pass from one to 
the other (e.g. in the functional integral) is to use the remaining two parameterizations as 

intermediate steps. 

Parameterization 1 ("tree-gauge"). If there is a gauge-condition such that each class of 

gauge-equivalent configurations contains one and only one representative fulfilling this 
condition, the entire class can be parameterized by this particular representative. A con- 

venient way to fix a gauge consists in fixing the values Ax.x+f, of the gauge field for all 
the links (x, x +/2)  belonging to a set T of links which has properties of a tree (see [12]). 

By a tree we mean a pair (x0, T),  where x0 c A is a lattice site which we call a root of 
the tree and 7- is a subset of links of the lattice, having the following property: for any 
site x c A there is one and only one path connecting x with the root x0 and composed of 
links belonging to the tree. We denote this path by (x0, x)7-. 

By a tree-gauge we mean fixing the value of all the gauge potentials along the tree 
(e.g. putting them equal to zero). Now we may use all the remaining parameters (i.e. the 

values of the matter field ~bx and the values of the gauge potential Ax,x+f~ on all the links 
which do not belong to the tree) as parameters in the space of gauge orbits. There is, however, 
a residual gauge which still remains: the global gauge transformation which rotates all the 
values ~bx in the same way and does not change the values of the gauge potential. To remove 
this freedom we may fix the phase of the matter field at the root (assuming e.g. that q~x0 is real). 

A most simple example of a tree can be obtained as follows. Choose any root and take 
as 7- the following collection of links: 
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(1) all the links (x, x + 3) belonging to the x3-axis passing through the root, 

(2) all the links (x, x +2),  belonging to the two-dimensional plane (x 2, x 3) passing through 

the root, 
(3) all the links (x, x + 1) belonging to the three-dimensional plane (x 1 , x 2, x 3) passing 

through the root, and finally, 
(4) all the time-like links (x, x + 0). 

Fixing Ao is usually called a temporal gauge. This is however not a complete gauge 
condition, since any gauge transformation which is time-independent leaves the condition 

unchanged. Fixing also gauge fields on the remaining space-like links of the above tree and 

fixing the phase of the matter field at the root, removes this residual gauge-freedom. 
A three-dimensional tree defined by (1)-(3) can also be used to fix completely a gauge 

in the space of Cauchy data on a fixed three-dimensional lattice-layer {x ° = const.}. This 

is a generalization of an axial gauge-condition. 

Parameterization 2 ("improved tree-gauge"). Keeping a tree-gauge, we may parameterize 

the electromagnetic degrees of freedom by the values of the field strength f .  However, 

not all the values of fx;fz,~ are independent, because f is a closed form. This means that 
the sum of f over all the plaquettes belonging to the boundary of any three-dimensional 

cube vanishes. To find independent parameters we take for every off-tree link (x, x + 12) 
the closed path composed of (1) the tree-path (x0, x)7-, (2) the link (x, x + /~)  itself and 

(3) the inverse tree-path (x + 12, x0):r. The above closed path is the boundary of a surface 

composed of a finite number of "along-tree-plaquettes". Take the value ~ , x + k  (T) of the 

electromagnetic flux through it, i.e. the sum of all the values fx;f~,o corresponding to this 

surface. The collection of fluxes Fx,x+f, (7-) corresponding to all the off-tree links contains 
the complete, independent information about the gauge field. To prove this statement we 

observe that fx,x+f~ (7-) is equal to the value of a (#)Ax,x+f~ plus the sum of all the along- 
tree values of the gauge potential A (multiplied by the length of the corresponding link), 

over the entire path (x0, x)7- and (x +/~,  x0)7-. The latter being fixed by the tree gauge, 
we see that the information contained in fx,x+f~ (7-) is equivalent to the information about 

Ax.x+f~. We conclude that the values of f on the plaquettes containing tree-links ("along- 

tree-plaquettes") can be chosen as independent variables. 

Parameterization 3 ("long hydrodynamical invariants"). For a given field configuration 

(4~x, Ax.x+f~) on the lattice, we define the lattice analog of hydrodynamical invariants (1.6): 

Otx+t~ - Otx (2.3) 
Rx ---- 14~xl, Vx,x+k = ax,x+iz + ga(lz) 

where Otx is a phase of q~x, i.e. any real number satisfying the equation 

Rx e ia~ = ~bx . (2.4) 

Since the phase is defined up to 2nrr, the above quantities are defined only up to a residual 

gauge transformation 

Vx,x+f~ = V~,x+f~ + )~x+f~ - Lx (2.5) 
ga(#)  ' 
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with the gauge function assuming discrete values only: ;~x ~ 2rr77. The value of the elec- 
tromagnetic field is equal to the curl of v: 

1 
(a(lZ)Vx,x+fL + a(V)Vx+Tz,x+~z+~ fx;~,O -- a(#)a(v)  

+a(lZ)Vx+f~+~,x+O + a(V)Vx+~,x). (2.6) 

Sometimes it is useful to exclude from the configuration space the zero-measure set of 

configurations with vanishing values of R. To parameterize the remaining configurations 

we may use Px -= log Rx. The space of values of all variables p and v describing the initial 
data is topologically equivalent to R N+L, where N is the number of sites and L is the 

number of links contained in X. We stress however that there is still the residual (discrete) 
gauge transformation (2.5) acting in this space. The corresponding group is topologically 
equivalent to 77 Iv. The space of initial configurations can be obtained as the quotient with 

respect to this group action, i.e. it is equivalent to ~L X T N where by T N we denote 

the N-dimensional torus. On the classical level this fact has no specific consequences. We 
will however see that in the quantum version of the theory this non-trivial topology will be 

responsible for the electric charge quantization. 

Parameterization 4 ("short hydrodynamical invariants"). Due to the above transformation 

properties of Vx,x+~, the following U(1)-valued object is a genuine gauge invariant: 

Wx,x+fL = exp(iga (/z) Vx,x+~) 

= (~bxR-~l) -I  exp(iga(tz)Ax,x+~)(dpx+~Rx-~ ) . (2.7) 

Obviously, we have 

W - 1  = W *  ^ Wx+fz, x = x,x+fz x,x+Iz " 

Passing from v's to W's we partially have lost information about the electromagnetic 
field. Indeed, due to equation 

Wx,x+~ • Wx+fz,x+~+~ " Wx+fz+~,x+~ • Wx+~,x = exp (iga(Iz)a(v)fx;fz,~) (2.8) 

we are able to reconstruct fx;fz,~ only up to 2nzr/ga(Iz)a(v).  The complete gauge-invariant 
information about the field configuration is therefore given by the following set of invari- 

ants: (Rx, Wx,x+f~, fx;~,~), where Rx > 0, IWx,x+~l = 1 and f is a closed two-form, 
fulfilling (2.8). 

To choose a maximal set of independent parameters among all the above ones, we may 
again use any tree T and to select the set composed of the following invariants: 
(1) all the values Rx, 
(2) all the "along-tree" values Wx,x+fz, 
(3) all the fluxes .T'x,x+~(T) corresponding to all the "off-tree" links. 

We see that the compactified (U(1)-valued) degrees of freedom are now described by the 
quantities Wx,x+~, whereas the remaining degrees of freedom have trivial topology. 
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A similar parameterization may be used to describe in a gauge-independent way the 

space of Cauchy data on a three-dimensional layer of the lattice given by {x ° --- const. }, but 

here only space-like # ' s  are necessary. The electromagnetic field on space-like plaquettes 

reduces to the magnetic field, fx.i~ 7 --- Bx ~ i and we have 

Wx,x+~ " Wr+Lx+~+i Wx+~+Lx+i W+Lx = exp (iga2 Bx;Li). (2.9) 

Since B is a closed form, for any three-dimensional cube the following combination vanishes 
identically: 

Bx: ~ [ + Bx;h, ~ + Bx;Lh + Bx+~:[, ~ + Bx+[:Lh + Bx+~:~j ==-- 0. (2.10) 

Again, as independent variables we may take only "along-tree" values of Wx,x+ ~ and only 
"off-tree" values of the magnetic flux ~r,x+~ (7-), for any fixed three-dimensionaltree 7-. 

2.4. Reconstruction of the field configuration from invariants 

To reconstruct the field configuration (q~x, Ax.x+#) from the "long hydrodynamical in- 

variants" (Rx, Vx,x+~) we choose any tree (x0, 7-) and put an arbitrary value of Ax,.~+i~ 
along the tree. We may also choose the phase Otx0 at the tree-root in an arbitrary way. Mov- 
ing along the tree and using the definition (2.3) of v we may now reconstruct all the phases 

or,: at all the sites. Then, we reconstruct uniquely the matter field ~Px from (2.4) and the 

remaining gauge potentials Ax,x+Tz from (2.3). 
To reconstruct the field configuration from the "short hydrodynamical invariants" it 

is, therefore, sufficient to reconstruct the long invariants v. Choose first any values 
satisfying (2.7) and define f as the lattice curl of ~. The lattice two-form ( f  - f )  is 

closed and integer-valued (more precisely, Eq. (2.8) implies that it takes values in the set 
(2Jr/ga (#)a(v))Z). Using the lattice version of the Poincar6 lemma we see that there ex- 
ists an integer-valued one-form /5 on the lattice such that curl/3 = f - )7. Hence, the 

one-form v := fi + /3  fulfills (2.6) and may be taken as a possible representative of long 

hydrodynamical parameters. 

3. Classical field dynamics  

3. 1. Lagrangian formulation of dynamics 

To obtain the difference equations describing the dynamics of the field on the lattice we 

use the following approximation of the Lagrangian (1.1): 

1 1 2 Cx = -V(Icpxl2)- -~ Z g U U  l(DdP)x,x+~I2- ~ Z g ~ g W  (fx;rz,~) , (3.1) 
/z /~,v 

where we sum over positive axes directions only. The action for a given region • of space- 
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time is given by 

Sv = y ~  ra3E.x , (3.2) 
x E V  

where we sum only over the internal sites. As we already mentioned, the fields on the 
boundary sites and links have to be fixed. They are used as the boundary conditions for the 
dynamics. The dynamics is deduced from the above action and is given by the following 
system of second-order difference equations: 

0 O~bx 2 ra3 2V'-dpx - y~̂  ~ (DdP)x,x+~z , 
u (3.3) 

O-- -- gUUra 3 g Im(~x(Ddp)x,x+~) + ~ fx;~,~ • 
^ 
IJ 

Introducing the canonical momenta, analogous to (1.8), 
^ ^ ^  

rrx u = _gUtZ(DdP)x,x+fz, p~xV= ~zlz vv~ - g  g Yx;~,~, (3.4) 

the same equations may be written as a system of first-order difference equations 

^ 1 ~ ^  

1 rrxU ' - g  Im(q~x rrx ~) = Z a ~  pxuv' (3.5) 

3.2. Canonical momenta 

Initial data for the theory consist of field configurations and the corresponding momenta 
in a single three-dimensional lattice layer 27t, given by {x ° = t}. Because momenta (3.4) 
are always attached to the time-like lattice links and plaquettes, we may choose between the 
future-directed and the past-directed momenta. In the first case the complete Cauchy data are 

given by the collection (q~x, A ~ Jr 6 px6f,). To keep the future orientation of the momenta, 
x , x q - k '  x 

we will describe the Canchy data in the second case by (CPx, Ax,x+ ~, -~rx  6, _p-6~)x . We 

will call the first collection "the Cauchy data on Z +' '  and the second one "on S t " .  We 
may imagine 27 + (resp. 27t) as the hypersurface obtained from 2~t by a tiny translation in 
the positive (resp. negative) direction of the time axis. 

To simplify the notation we will denote 

6 jr x : =  _ r r x  6, Y g x  + : ~ 7 r  x , 

D + p6~ x,x+k -- x -- fx;6,~' D~x+~ := p-6~ ^ := = x = fx;-6,~' 

where by D we denote the electric components of the electromagnetic field (the magnetic 
components are already denoted by B). Notice that, similarly as in the continuous version 
of the theory, the momentum canonically conjugate to the gauge potential Ak is given by 
minus the electric induction field. This means that the momentum conjugate to Ax,x+ ~ 

on E + (resp. 27-) is given by -D+x.x+~ (resp. - D f ,  x+~). 
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There is, however, an additional factor a 3, which appears in the canonical structure of 

the Cauchy data. Indeed, in the continuous version of  the theory the canonical structure is 

given by the following Poisson bracket: 

{ Re Jr(x), Re ~b(y) } = t~ (3) ( x  - y) 

and similar formulae for the remaining degrees of  freedom. Integrating the above formula 

over a domain 12 C 12 with respect to the variable x we obtain 

Rerr (x)d3x,  Re4~(y) = 3v.y :=  0 otherwise. 
v 

In the lattice version of  the theory the discretized observables represent their mean values 

over elementary cubes. Hence, we should choose as 12 such an elementary cube and replace 

the integral by a 3 Re rr. This way we obtain the canonical Poisson bracket: 

{a3 Rerrx,ReOy} = 3x,y . 

We conclude that the momentum canonically conjugate to ~bx is equal to a3~x, and the 

momentum canonically conjugate to Ax,x+ ~ is equal to - a  3 Dx,x+ ~. 

3.3. Initial value problem 

The transition from • t  to 12+ will be called potential evolution. The transition from 

I2 + to 12~r will be called kinetic evolution. The global evolution of  the field is given by 

the successive composition of  the potential and kinetic evolution operators. 

As a result of  the potential evolution, the field configurations (4) x, Ax,x+ ~) remain un- 

changed and the momenta change their value from (zr x , D~x +~ ) to (re 2 , D+x, x +k̂  ) according 

to formulae (3.5). We have therefore 

T 
;r + = rr~- - 2 r V '  • ~b x + - Z(DqS)x,x+~ (3.6) 

a ^ 
k 

and 

( D+x,x+~ = Dx_x+f: q- g r  Im ~)x(Ddp)x,x+~ + a- Z Bx:L[" 
i 

During the kinetic evolution the momenta are transported parallelly: 

rrx+ 6 = exp ( - i g r  Ax,x +6) Jr + , 

and 

(3.7) 

(3.8) 

= D + (3.9) Dx +O,x +6+~ x,x +[~ ' 

whereas the configurations undergo the linear evolution according to formulae (3.4). This 

implies for the matter field the following evolution: 

exp (igrAx,x+6) q~x+6 = ~bx + r~r + • 
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Hence, the kinetic evolution is given uniquely up to a gauge transformation. Indeed, 

fixing in an arbitrary way the value of the gauge field on time-like links we may derive 

uniquely the final data from the initial data. Putting e.g. Ax,x+ 6 = 0 we obtain from (3.4): 

4~+6 = ~x + rZrx + , (3.10) 

Ax +6,x +6+~ = Ax,x+ ~ - rD+x+ ~ , (3.11) 

whereas the momenta remain constant due to (3.8) and (3.9). 

We stress that both the potential and the kinetic evolution are local: to find the final data 

in a bounded portion V of the lattice we do not need to know the entire initial data on E, 

but only a portion of it, contained in the discrete causal shadow of V. 

On quantum level the potential evolution will be generated by the potential part of the 

action (i.e. the sum of all the terms assigned to the lattice sites and to the purely space-like 

lattice links and plaquettes), whereas the kinetic evolution will be generated by the kinetic 

part of the action (i.e. the sum of the terms assigned to the time-like links and plaquettes). In 

the r ~ 0 limit we obtain, due to the Trotter formula, the continuous evolution generated 

by the sum of the potential and the kinetic energy. 

3.4. Gauge-invariant description o f  initial data 

Due to the gauge properties of~b and Jr, their combination zrq~ is gauge-invariant. Dividing 

it into the real part K and the imaginary part M we observe that the latter has to fulfill a 

constraint analogous to (1.9), implied by the zero component of (3.5): 

'0 / 
x,x+k g ^ g ~ 

where we denote 

rr~q~x =:  K + + iMx + , zr~-q~ =:  K~- + iMp-. (3.13) 

Similarly as in the continuous theory, we may reduce the phase space of Cauchy data on 

every 27t with respect to these constraints. As a result we obtain a formula analogous to (1.10) 
with the continuous divergence operator replaced by its lattice analog. We conclude that K 
(with the index "+"  if we are on ~7 + and " - "  if we are on • - )  is the momentum canonically 

conjugate to p = log R, whereas the electric induction field D is the momentum canonically 

conjugate to the long hydrodynamical variable v. The vanishing left- (resp. right-)hand side 

of (3.12) has to be considered as the momenta canonically conjugate to the (completely 
arbitrary) phase of the matter field. Knowing (R, v, K, D) on E we may first reconstruct 

the configuration (q~, A) (uniquely up to a gauge transformation). Then, we obtain the 
missing information M about the momentum zr from the lattice divergence of the electric 
induction field D, according to (3.12). This way we reconstruct (uniquely up to a gauge 
transformation) the complete initial data (~, A, Jr, D). 
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Splitting the matter field into two degrees of freedom corresponding to its real and imag- 

inary part: 4~ = ~bl + Rb2, the corresponding momentum decomposes accordingly into 7r = 

rq + izr2. Thus 

K = ~1~! + ~2~2, M =  ~1~2 - -  ~2~1 • (3.14) 

are the generators of the two-dimensional dilatations and rotations, respectively. 

3.5. Time evolution in terms of gauge-invariants 

Both the potential and the kinetic evolution may be rewritten in terms of the invariants. 

During the potential evolution the configurations (R, W, B) remain unchanged whereas the 
following equations for the momenta may be immediately deduced from (3.6), (3.7) and 
the definition (3.13) of K: 

.~ x x ~ R - RxRx+i¢ Re Wx,x+ ~ , 

(3.15) T T 
D+x,x+~ = D-x,x+i¢ + gaRxRx+~ Im Wx,x+ ~ + a- Z Bx:Li" 

i 

The last equation is the lattice version of the Maxwell equation/)  = - j  + curl B. 

The simplest way to rewrite the kinetic evolution in terms of invariants is to fix the tem- 

poral gauge Ax,x+ 6 = 0. With such a choice the kinetic evolution of the matter field 
over each time-like link becomes a free evolution of the two degrees of freedom de- 
scribed by 4~. The evolution may be thought of as generated by the free Hamiltonian a3H, 
where 

H = ½~7r = I R - 2 ( K 2  + M 2) 

is the Hamiltonian density and the factor a 3 comes from the integration over an elementary 
cube. It is obvious that H remains constant during the kinetic evolution. This implies that 

its value on both ends of the link is the same. Also the "angular momentum" M remains 
constant in agreement with formula (3.12) (remember that M is not an independent variable 

but has to be treated as the divergence of the electric induction field). 
Calculating the Poisson bracket of various quantities with the above Hamiltonian we 

obtain their evolution along the link (x, x + 6). Hence, 

R ----- {K, a3H} = 2H (3.16) 

implies 

Kx+6 = K+x + 2rH+x " (3.17) 

m oreover, 

(R2)"  = {R 2, a3H} = 2 (4~17q + ~bzrr2) = 2K (3.18) 
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implies the evolution of R, compatible with (3.10): 

R2 ^ = I~bx+6l 2 = ICx + rrrx+l 2 = R2 + 2vK+ + 2r2Hx + (3.19) 
x+0 

The lattice curl of Eq. (3.11) implies the evolution of the magnetic field, analogous to the 

Maxwell equation/) = -cur l  D: 

_ D + D + r ( x,x+k + x+Lx+~+i + o +  ^ A ^+D;+i ,x)  (3.20) Bx+6:/~} = Bx ;L[ -  a x+k+t,x+t " 

To derive the kinetic evolution of W let us observe that the definition of D implies 

Wx+6,x+5+ ~ = Wx+6, x exp (-igraDx,x+f,)Wx,x+ ~ Wx+Lx+6+~. (3.21) 

Using the evolution of ¢ written in polar coordinates 

we may express Wx,x+ 6 in terms of Cauchy data on 2?+ or on E - :  

1 
= Cx +5 R x +6 

2 - \ - 1 / 2  
= (.x~+8- 2~K;+ 6 + 2~ ";+6) 

Finally, substituting (3.22) into (3.21) we easily find the evolution of the "short" hydrody- 
namical variables, 

x R x e x p ( - i g r a D  + ,)Wx x_~_ x Rx+ ~ X,Xq-R , "1-~ 

x K + [, + ( x+, + 

2rZH + ~ - 1 / 2  (3 .23)  ( 2\R x+~ + 2r Kx+ i + + x+i/  " )< 

4. Q u a n t u m  k i n e m a t i c s  

4.1. Quantum states of the field 

Let us begin with the naive Schr6dinger representation of a quantum state ~ as a wave 
function of field configurations: 

q' = qJ({¢x}, {Ax,x+},}) 

on our finite three-dimensional lattice E.  The momenta canonically conjugate arerepresented 
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by derivatives with respect to configurations, 

a3(Rerrx ) _ h 3 a3(imzrx ) _ h 3 
i O(Re~bx) ' i 3(Im~bx) 

(similarly as in the classical case, the factor a 3 appears because of the integration of the 

densities of the above momenta  over elementary cubes of  the lattice). The above definitions 
may again be shortened as follows: 

a3zr x = 2 h__3 (4.1) 
i O(bx 

Similarly, 

_a3 Dx,x + i _ h 3 
i 3Ax,x+ ~ 

(4.2) 

This implies that the generator of  two-dimensional rotations M = 4~1 zr2 - 4~2Zrl (there is no 

ordering problem here!) is represented as the derivative with respect to the phase C~x of ~bx: 

h 0 
a3Mx = T 3ot x (4.3) 

To distinguish between the momenta  on I2 + and ,U- we will mark them, when necessary, 
with + or - ,  respectively. 

The physically meaningful quantum states have, however, to fulfill the Gauss con- 
straint (3.12). Written in terms of the above momenta,  the constraint implies the vanishing 

of the following operator: 

O 1 ~ 3 (4.4) 
Gx - 3Otx ga ~ 3Ax,x+ ~ 

But ,~,~.x G x is the generator of  the gauge transformation (2.1). Wave functions which are 
annihilated by G x are, therefore, those which are constant on gauge orbits. They cannot 
be square-integrable with respect to all the gauge parameters because gauge orbits are not 

compact. To define the quantized version of  our theory we have to organize such functions 
in a Hilbert space. For this purpose we have to define a scalar product in the space of 
gauge-invariant wave functions. There have been many proposals how to define such a 

scalar product (cf. [ 1,2,16,17]). In this paper we shall use the product defined in [ 19,20] on 
geometrical grounds. However, we are not going to impose this definition a priori, but will 

derive it uniquely from the representation theorem for the algebra of  observables. 

4.2. Algebra o f  quantum observables 

In the naive Schr6dinger representation used above, quantum observables are those oper- 
ators, which are gauge-invariant. The gauge-invariant functions of  configurations belong to 
this class. They can be used as multiplication operators acting on gauge-invariant functions. 

This way we define quantum observables (Rx,  Wx.x+ b B x ~ i), where all Rx are self-adjoint 
; , 
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and positive, Wx,x+ ~ are unitary and Bx;L[ are self-adjoint. All these operators commute 
with each other. They are not independent because they obviously fulfill the constraints 
(2.9) and (2.10). 

Among the momenta, the electric induction field operator Dx,x+ ~ given by (4.2) and the 
generator of the two-dimensional dilatation 

Kx : =  l(~blTl'1%- ~l~bl %- ~27r2 %- 7t'2~b2) (4.5) 

(symmetrized version of the classical quantity (3.14)) produce a gauge-invariant function 
when applied to a gauge-invariant function. Hence, they are also observables. Denote by 
OE the algebra generated by the above operators. The following commutation relations 
between the generators of O f  can be immediately checked: 

[Rx ,a3Kx]  = ihRx , 

[Wx,x+ ~, - a  3 Dx,x+~] = - h g a  Wx,x+ ~ , (4.6) 

a 

with all the remaining commutators vanishing. 

Definition. The charge Qx E O f  at a lattice site x is defined as the lattice divergence of 
the electric induction field: 

ax  = a3 divx O = a 2 Z Dx,x+k = ga3Mx " (4.7) 

The commutation relation 

[Wx,x+ D (1 /g)Qx]  = h Wx,x+i,, 

follows immediately from the above definition of Q and from (4.6). 

Lemma. The operator Ux : =  e (2rri/e)Qx commutes with all the observables in O z .  

Proof  The operator Qx is built of the operators D. Therefore, it commutes with all the 
observables Ry and Ky. Hence, we have to check the commutation of U with W and B. The 

commutator [divx D, Bx,Li] vanishes, because it is a sum of the term [Dx,x+~:, Bx;L[] = 

ih/a 4 and the term [Dx,x+[, Bx;L[ ] = - i h / a  4 (B is antisymmetric in/~, D. To check the 
commutation with W consider a one-parameter family of operators 

W ~- ^ = e-i~.a3 divx D W ^ei)~a3 divx D 
x,x+k x,x+k 

Its derivative over )~ equals 

OWZx,x+~/O~ " = e-iZa3 divx D [--i 0 3 div x D Wx,x+t~ + i Wx,x+ k 0 3 div x D ] e  ixa3 divx D 

and contains the commutator of a3divD and W equal to 

a2[Dx,x+~, Wx,x+/~] = - g h  Wx,x+ ~ . 
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Hence, 

OWZx,x+[~/O)~ = ighW ~ ^ x,x+k 

and consequently 

W k ~ eig h)~ W 0 
x.x+i x,x+~ ' 

thus, for ~.n = (2rr/gh)n with n c 7/we have W z. = W ° = W. This implies that the 
operator 

ei~.la3 divx D ~ e(2Jri/gh)Q.~ 

commutes with all the observables, which ends the proof. I~ 

4.3. Existence and uniqueness of irreducible representation 

Algebra O r  could be also defined without any use of the Schr6dinger representation. 
For this purpose, classical gauge-invariant observables (R, W, B, D, K) can be taken, with 

their Poisson brackets replaced by commutators. Quantization of such a structure means a 
construction of its irreducible Hilbert space representation. 

The SchrSdinger representation in the space of all L2-functions of field configurations 

Cx and Ax,x+ i is not irreducible, since there is a non-trivial, unitary operator Ux which 
commutes with all the observables. For irreducible representations, this commutativity 
would imply 

U~ = e 2rri0x • 1. 

The electric charge quantization would be an immediate consequence of the above condition. 
Indeed, the spectrum of Qx covers the set {gh. n + Ox, n c 77}. Hence, e := gh plays the 
role of the elementary charge. 

There are, however, non-equivalent irreducible representations corresponding to different 
values of the angle Ox. To avoid non-symmetry of the charge spectrum we will always impose 
condition 

0~ --= 0, (4.8) 

which implies already the uniqueness of the representation. 

To prove this statement let us first construct a representation by introducing the following 
scalar product: 

Definition. If q, and ,~, are gauge-invariant functions of field configurations q~x and A x.x+~ 
on I7, their scalar product is given by the formula: 

¢~1~'  = 1 f ~ 1-I dAx,x+k I-IdCx dt~x, (4.9) 
(x,x +[O¢7- x 

where 7- is any three-dimensional tree in 17. 
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It is easy to see that the above definition does not depend upon the specific choice of 

the tree T and the choice of a gauge on it (i.e. the choice of the values of the "along-tree 
gauge potentials"). In fact, we integrate over the space of gauge-orbits, parameterized by 

"tree-parameters". Moreover, we use the invariance of the induced measure with respect to 

a particular choice of the "tree-gauge". 

The Hilbert space generated by the above scalar product will be denoted ~ .  
Elements of O f  act in a natural way as operators in 7-/~. Due to constraint (4.4), the op- 

erator Qx reduces to "two-dimensional angular momentum" operator (4.3) whose spectrum 
is {gh • n, n c 77}. Hence, the condition (4.8) has been fulfilled. 

Theorem. For a finite three-dimensional lattice 2?, there exists only one (up to unitary 
equivalence) representation of  the algebra 0 ~ ,  which fulfills the condition (4.8). 

Proof Let us choose any three-dimensional tree T in 27. To each site x different from the 
root xo we assign the following unitary operator: 

W x ( 7 )  := I- I  W y+~. (4.10) 
(y,y+k)E(xo,x)7- 

Take the following collection O s  (T) of operators: 

(1) (Px, Kx) at all the lattice sites, 
(2) (Wx(T), (1/g) Qx) at all the lattice sites different from the root x0, 

(3) (,~x,x+~(T), Dx,x+~) on all the off-tree links. 
It is easy to see that O f  (T) may be chosen as the minimal Lie subalgebra generating the 
entire algebra O f  and that the commutation relations (4.6) are equivalent to the canonical 

commutation relations between pairs of operators (1)-(3): 

[px,a3Kx] = ihl ,  

[Wx(7-), (1/g)Qx] = -hWx ,  (4.11) 
I 

[(1/a)SFx, x +[:(7-), a 3 Dx,x+~] = 1, 

with all the remaining commutators vanishing. All the representations of such a 
Heisenberg algebra are equivalent to the Schr6dinger representation in terms of the wave 

functions " ~ "  depending on the parameters (Px, Wx (T), (1/a)Ux,x+~(T)) (the so-called 
0-representations of Qx are excluded by the condition (4.8)). The wave functions are 
square-integrable with respect to the Lebesgue measure on the first and the last group 
of parameters and with respect to the standard measure (Wx) -1 dWx on the circle. The 
momenta (a 3 Kx, (1/g) ax ,  a 3 Dx,x+ ~) are represented as differentiations with respect to 
the above variables. 

To see that the above Schr6dinger representation is equivalent to the one constructed 
before, it is sufficient to observe that in the tree-gauge A ~- 0 on 7" we have 

4~x = e "x Wx(T) arg(~bx0) 
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outside of the tree root and 
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Ax.x+ ~ = (1/a)Jrx,x+~(T) 

on the off-tree links. We stress that the phase arg(~bx0) of ~bx0 at the tree root is completely 

arbitrary and the corresponding momentum (1/g) Qxo is not an independent variable: its 

value is equal to the value of the total electric charge contained in 27 (determined by the 

boundary condition which we imposed) minus the sum of the remaining charges ( l /g)  Qx 
outside of the tree root. 

Hence, the formula 

q" = 1-I e-P*~ 
X 

defines a square-integrable function with respect to the Lebesgue measure d~b d~ dA which 

we used in the definition (4.9), i.e. an element of our Hilbert space ~ z .  The transformation 

is obviously unitary because the integration over arg(~bx0) in (4.9) kills the factor 2rr. This 

ends the proof. [] 

4.4. Unbounded lattice 

There is a natural inclusion O~'  1 C O~'  2 when z~ 1 C z~2. Hence, the algebra OE for 
the complete, unbounded lattice 27 = 77 3 can be immediately obtained as the inductive 

limit of the algebras corresponding to bounded 27's. Unfortunately, the representation of 

the commutation relations (4.6) for the unbounded lattice cannot be unique, because the 

representation of the Heisenberg commutation relations (4.1 1) is not unique for infinitely 

many degrees of freedom. The theory splits, therefore, into separate, non interacting sectors. 

Different sectors of the theory may be constructed e.g. from different vacuum states. 

The space of all the (mixed) states azj for a bounded lattice S1 can be treated as a dual 

of O ~ .  The inclusion of O z  1 into O z  2 defines in a unique way the projection 

P.ZI..Z2 ~ ° Z2  -+  ~ Z i  • 

The space of quantum states a~ on the unbounded lattice can thus be constructed as a 

projective limit of the spaces corresponding to bounded Z's.  Choosing a single state s c 
~r~: as a vacuum, enables us to reconstruct the entire sector of the theory via the standard 

Gelfand-Naimark-Segal procedure. The physically correct choice of the vacuum will be 

discussed in the sequel. We stress, however, that each Hilbert space obtained this way 

corresponds to a fixed value of the total electric charge and the "superselection rules" are 
automatically satisfied. Hence, for describing the interaction of charged particles, the non- 

vacuum sectors will be also important. 
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5. Quantum dynamics 

5.1. The Feynman path integral in terms of gauge-invariants 

To define the evolution of the quantum system defined above, we begin with a dis- 

crete version of formula (0.2). Both the left- and right-hand sides are functions of the 

fields (~b z, Az,z+ ~) on the surface z~fin. To compute the value of the right-hand side we 
have to integrate over initial and intermediate configurations, with the final configurations 

(Cbz, Az,z+ ~) being fixed. But, since the integrand is constant on gauge-orbits, the integration 
over all intermediate configurations will always be ill-defined. Similarly as in the definition 
of the Hilbert space 7-/s, we have to define the integral in such a way that each gauge orbit 

is taken only once. 

Definition. The quantum evolution on the lattice is given by 

U(1;~n,1;init)~init = ~ e(i/h)SOinit(~x, Ax,x+~:) ~ dq~y d~)y 
tini t <y0 <: tlin 

x 1"-[ dAy,y+~ 1-I d~)xd()x 1-I dAx,x+'~' (5.1) 
(y,y+/~)¢T xeEinit (x,x+[~)~'T 

where T is any four-dimensional tree, covering the intermediate region {tinit < y0 < /fin} 

b e t w e e n  ,~init and I~n,  together with the initial surface ,~'init, and the corresponding tree- 
gauge has been chosen in an arbitrary way. The action S corresponding to the region {tinit < 

y0 < t~n} is given by formula (3.2). 

Similarly as in the case of formula (4.9) it is easy to check that the result does not depend 

upon the specific choice of the tree and the choice of the gauge. Moreover, because of the 
gauge invariance of the initial wave function and the action S, the result is a gauge-invariant 

function of final parameters, i.e. it describes a physical quantum state on ~7nn. Hence, we 

have defined an operator U(rn°,~:~nit ) from )-~Tinit to "~fin" We will show in the sequel, that 
the normalization factor N may be chosen in such a way, that U is unitary. 

5.2. Factorization of the evolution 

The simplest way to compute the value of the integral (5.1) consists in choosing the four- 
dimensional tree 7- which is composed of a three-dimensional tree "Tiinit in ~V'init and all the 
time-like links (y, y + 6). Moreover, we choose a zero temporal gauge (for the moment we 
do not need to specify the value of the gauge on  ~nit).  First, let us perform the integration 
over the intermediate configurations. This way we obtain a kernel depending upon the initial 
and the final configurations. But the action S is a sum of kinetic terms 

a 3 a 3 
Skin = ~ y ~  kby+~ - ~yl 2 + ~ y]~(ay+O,y+O+~ - Ay,y+~c) 2 , 

y y,k 

assigned to each elementary time-interval of the discretized time axis, and potential terms 
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assigned to each surface {y0 = const.}. Hence, the kernel U(rfin,~'init ) is equal to the suc- 
cessive superposition of the kinetic kernels gkin = e (i/h)Skin/N and the potential kernels 
gpot = e (i/h)Sp°l. 

Observe that the kinetic kernel is equal to the resolvent kernel corresponding to the linear 
Schr6dinger equation: 

1 U(t+r, t) (Y, x) = _ _ e  ( i /hr)(x-y)2 . 
2,/Ty-  

The kinetic evolution consists, therefore, in the free Schr6dinger evolution during the time 

interval r of all the degrees of  freedom (dpy, Ay,y+i) on Z'. Such an evolution kernel is 

obviously unitary when applied to any square-integrable function of initial configurations 

(4) x, Ax,x +i ). Applying this kernel means integrating over all the parameters (fb x, Ax,x + i ). 
The normalization factor equals (2zrhr) -1/2 for each degree of freedom. 

In our case we are going to apply the kernel to gauge-invariant wave functions only. This 
means that, according to formula (5.1), we are going to integrate over the off-tree parameters 

only. We stress, however, that this difference does not produce any problem, because both 
integrals give the same value when applied to a gauge-invariant wave function. This is due to 

the oscillatory (Fresnel-like) character of the kernel. The integration of Ukin with respect to 
the gauge parameters over each gauge orbit will give us the value 1, so only the integration 

over the space of orbits remains. The situation is similar to the following example: we may 
apply the three-dimensional free Schr6dinger evolution to wave functions which do not 

depend upon the z-variable. The integration over dz does not produce any difficulty due to 
the oscillatory character of the Fresnel kernel. 

The potential evolution, consisting in multiplying the wave function by Upot, is obviously 

unitary because I gpot[ = 1. 

5..3. Quantum evolution in the Heisenberg picture 

It is very instructive to reconsider the above evolution in the Heisenberg picture, where 
the quantum state remains constant in time and the quantum observables evolve according 

to the formula O ~ (9 := U - I O U .  It is obvious that the potential evolution leaves 
the configurations (R, W, B) invariant. The evolution of momenta (K, D) may be easily 
obtained, according to formulae: 

K+ q, = U o K-Vpo, D+ q, = VpoID-Vpot 
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This way we obtain the following formulae, analogous to classical equations (3.15): 

R + = R  - ' x x 

W + ^ x,x+k = Wx,x+k ' 

B+^ x;k,l = Bx;L~' (5.2) 

x = x x - ~  ^ R - R x R x +  ~ ~ , 

W -1 ^ Wx,x+k 
D + = D -  + gr- 

x,x+i¢ x,x+i¢ a RxRx+k Tll + -a E Bx;Ll"  
x,x-l-k 

i 

In a similar way we may obtain the potential evolution of the electric charge M given 
by (4.3): 

i 
M + = -1 - ~ ( g 2  Spot ) Upo tM xUpot=  M x +  

_ W - 1  r Wx,x+~ x,x+~ 
= M x + - ~ R x  E R x  

2i 

This equation is the lattice version of the continuity equation: the value of the electric 
charge M changes only by the divergence of the electric current carried by the matter field. 

The corresponding formulae for the kinetic evolution will be derived in Section 6. Here 
we give only the final results. To simplify our notation we introduce the following quantity, 
analogous to the classical Wx,x+ 6, defined in (3.22): 

w-l^ = (~xe21)-1 ~x+oex-lo 
,x +O = x +O,x 

= R x [1 + rRxl  ( K ;  + iMx+ ) Rxl ] (R 2 + 2 r K ;  + 2 r 2 H ; ) - l / 2  . (5.3) 

It will be proved in Section 6 that the same quantity may be expressed in terms of the Cauchy 
data on 2?-: 

R 2 %,x+0 : ( x+(] -- 2TK2+6 q'- 2l'2Hx-+0) -1,2 

[1 rR-1 ,  (K2+ 6 iMx+6) Rxlr]  x - x+O -- Rx+O " 

Furthermore, we denote as usual: 

1 
Mx = ~ E Dx,x+ and 

k 

on both ,~+  and , ~ - .  

--  Rx' (Kx + R:' ,  
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The kinetic evolution now reads 

: ( , f  + + + . 

Wx+b,x+6+ ~ = Wx+6, x exp ( - i g a  r--D+x+~) 2 W~'x+k 
. "t" + 

x exp (- lga-~ Dx,x+~) W+Lx+O+i~, 

= _ r D+ D+ D+ Bx+O;L[ Bx;LI - ( x,x+~ + D+ ~ ^ ~ + + x+Lx) a x+k,x+k+l x+k+[,x+l 

K -  ^ = K + + 2 r H  + ,  
x + 0  x x 

D - ^  ^ ^ =  D + ^. 
x+O,x+O+k x,x+k 

(5.4) 

We stress that the quantum evolution is given by the same equations as in the classical 

case (formulae (3.19)-(3.23)). However, the evolution for W is given by the product of 

non-commuting operators. Changing their order changes the result completely. In (5.4) we 

have chosen an ordering, which formally reproduces the classical equation (3.23). 

Field equations (5.2) and (5.4) contain the complete set of  Maxwell equations. In fact, 

div B = 0 is an identity. The kinetic evolution reproduces the equation B = - cu r l  D. The 

potential evolution reproduces / )  = - j  + curl B, and the last equation div D = q is the 

definition of the electric charge density. 

We stress that, similarly as in the classical version of  the theory, the quantum dynamics is 

causal. Indeed, the evolution of  a momentum at the site x depends on variables at the nearest 

neighbors of  x only. This way, knowing the quantum observables in a bounded region of  27, 

we can compute the time-evolved operators in an entire future causal shadow of this region. 

5.4. Self-consistency of the evolution 

In the evolution formulae (5.2) and (5.4) we have applied a potentially dangerous opera- 

tion, the square root, to a time-dependent operator. To prove that our formulae are formally 

correct, we have to show that this operator is non-negative for all times. 

Theorem.  The operator R 2 + 2r K + 2r 2 H is a positive, self-adjoint operator for all values 
o f t .  

Proof The operator in question is equal to the square of  the modulus of the following 

operator: N = R + r R -  I ( K + iM + ih). Indeed, we have 

N t N = [ R  + r ( K - i M - i h ) R - 1 ] [ R  + r R - I ( K  + i M  +ih)]  

= R 2 + 2 r K  + rZ(K - iM - ih)R-Z(K + iM + ih) 

---- R 2 + 2 r K  + 2 r Z H .  [] 

We also have the following theorem. 
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Theorem. The operator W, given by the right-hand side of(5.4) remains unitary if W was 
unitary. 

Proof Unitarity of the evolved Wx,x+ ~ follows from formula (5.4) if we prove unitarity 

of Wx,x+ 6, 

Wig x+0^Wx x~-v'a:( R2 +2rK+x +2r2Hx+)-'/2[ Rx + r R x ' ( K + - i M + ) ]  

(.x + + [ = x R2 + 2rK+x 

+ + + 

= l .  [] 

This proves that Eqs. (5.2) and (5.4) define a self-consistent quantum dynamics of our 
algebra of observables. 

5.5. Boundary conditions 

Quantum evolution of Heisenberg operators described by formulae (5.2)-(5.4) is causal. 
This statement means that we may solve formally the initial value problem for quantum 
operators in the same way as we did for the classical gauge-invariants. This way, each local 
quantum observable may be represented as a combination of the observables contained in 
its discrete "past light cone". In the above statement the "speed of light" is understood in 
a purely combinatorial sense, corresponding to the structure of dynamical equations (5.2)- 
(5.4): one lattice spacing in the direction of time corresponds to at most one lattice spacing 
in the direction of space. 

The above procedure cannot, however, be continued if the above "light cone" hits the 
boundary of our finite lattice Z .  Similarly as in classical case, to continue the solution, one 
has to impose appropriate boundary conditions. These conditions are of purely classical 
("c-number") character. They will be imposed on a three-dimensional surface/3 defined 
as Cartesian product T × 02~ of the time axis T and the two-dimensional boundary of 27. 
The observables assigned to elements of the lattice/3 are thus non-dynamical and purely 
classical. 

The boundary data which we have to fix on /3 are R x and Wx,x+ 6 at all the nodes x 6 /3  

and Dx,x+~: at all the links (x, x +/~) such that both x and x +/~ belong to/3. 
To prove that the dynamics is now well defined we first analyze the potential evolution. The 

configurations R, W and B do not change during the potential evolution (5.2). To determine 
the momentum K+x we need K~, Rx+ ~ in the space-like neighbors of x and Wx,x+ g on all 
the space-like links starting at x. The boundary value of Ry being fixed, the evolution of K 
is, therefore, well defined. The potential evolution of the electric induction D is determined 
by the "internal" (i.e. dynamical) data. 



J. Kijowski, A. Thielmann/Journal of Geometr)., and Physics 19 (I 996) 173-205 199 

The kinetic evolution of  internal momenta K x and Dx,x+ ~ uses only internal quantities. 

The same holds for R x. To determine W~+f,x+6+; we need Dx,x+ ~ as well as both W,x+ 6 
and W +Lx+6+i. At the internal lattice nodes we may compute Wx,x+ 6 in terms of  R x, K X 
and M x = (1/ga) y~i Dx,x+ ~ but we have to fix its value at the boundary. Finally, to be 

able to determine the magnetic field B on a future internal plaquette we need to know the 

electric induction on all the boundary of  the respective plaquette. Hence, we have to use the 

value D inside the boundary/3. 

This ends the consistency proof of  the field dynamics. 

6.  K i n e t i c  e v o l u t i o n  o f  o b s e r v a b l e s  

6.1. Kinetic evolution of matter fields 

To calculate the kinetic evolution of our observables, we take first the free Schr6dinger 

evolution of  all the degrees of  freedom (qt, A, re, D) in the temporal gauge Ax,x+ 6 = O. 
Finally, we will use these results to compute the evolution of their gauge-invariant combina- 

tions (R, W, B, K, D). This way we obtain results, which are already gauge independent. 

We stress that the "free evolution of ~b and A", which we use in this section, is only a 

convenient way of  calculation and has no physical significance. In fact, in our approach 

there is no way to give any reasonable meaning to quantities ~b and A on the quantum level. 

The free Schr6dinger evolution of the two degrees of freedom (Re 4~x, Im 4~x) carried by 

q~x may be rewritten in terms of  the operators (R, F, K, M), where q~ = F - R is the polar 

decomposition of  the normal operator q~ = ~bl + i~b2. These operators fulfill the following 

commutation relations: 

[R, K] = iha -3R ,  IF, M] = - h a - 3 F ,  

all other commutators are equal to zero. 

The free Hamiltonian (equal to the two-dimensional Laplacian in the variable ~b) may be 

written as follows: 

H = --½h2A4~ = ½(~r 2 +zr 2) = ½R-I (K  2 + M2)R - l  , 

a3H being the generator of  the time evolution. The evolution of  the field operators in the 

Heisenberg picture is given by the equations 

i 3 . h i 
/ ~ = ~ . [ a  H , R ] = R - I ( K + , ~ a 3  ), I ~ = ~ [ a 3 H ,  F ] = i R - 2 ( M - 2 ~ 3 ) F ,  

i 3 I~ = ~l [a3H ' K] = 2H, ~4 = ~[a H, M] = 0 

The Hamiltonian H and the angular momentum M are constant in time. Hence, the evolution 

of K is linear: 

K(t) = K(0) + 2 H ( 0 ) t .  
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Moreover, for C = R 2 we have 

i 
= ~[a3H,  C] = 2 K ,  

which implies 

C(t)  = C(0) + 2K(0)t  + 2H(0)t  2 . 

We already proved that the above operator remains always positive. To find R(t)  we have 

to take its square root. 

To find the evolution of F let us consider the product R F .  We have 

i 3 
(RF)'----- ~[a  H, RE]  = R - I ( K  + i M ) F .  

Observe that the right-hand side commutes with the Hamiltonian and, therefore, is constant 
in time. Hence, we have 

R ( t ) F ( t )  = JR(0) + R(0) -1 (K(0) + i M ( 0 ) )  t] F (0 ) .  

Summarizing, after the time r we have 

H ( r )  = H(0), K( r )  = K(0) + 2rH(0) ,  

( R(r)  ----- R(0) 2 + 2rK(0)  + 2r2H(0)  , M(r )  = M(0), 

F ( r )  = (R(0) 2 + 2rK(0)  + 2r2/-/(0)) -1/2 
r 

rR(0)  -1 × [m0) + + iM 0))  

6.2. Kinetic evolution o f  gauge fields 

In our temporal gauge each degree of freedom Ax,x+i, undergoes separately the one-di- 

mensional, free Schr6dinger evolution and its canonical momentum D = - ( h / i a  3) (O/OA) 

remains constant. Hence, after time r we have 

hr  0 
a ( r )  = a(0)  + ia 3 oa  -- a(o)  - r D ( 0 ) .  

Taking the lattice curl of both sides we have 

B(r)  = B(0) - r curl D(0) , 

reproducing the free Maxwell equation. 

6.3. Kinetic evolution o f  physical observables 

Using the evolution of gauge-dependent fields, we may finally find the evolution of the 
gauge-invariant quantity 

 ,x+k (t) = exp(iga ax,x+ ~ (t)) Fx+~, (t) F -1 (t) 
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(no ordering problem because the operators on the right-hand side commute). Moreover, 

according to (5.3), we have 

: : 

Using the previous results it is easy to compute 

W~+6,x+6+ ~ = F-+l 6 exp( igaax+6,x+6+ ~) F~+6+~ 

= (Fx-loFx) F - I  e x p ( _ i g a  r_D + .]  exp ( igaAx ,x+  ~) 
x \ 2 x ,x+kl  

x exp ( - i g a  
+ 

= W -1 .exp  ( - i g a r - D  + ^'] Wx,x+ ~ 
x.x +O \ 2 x,x +k,I 

X exp ( - - i g a r - D  + ^] Wx+Lx+6+~ , 
2 x ,x+kl  

which immediately implies (5.4). 

7. Formulat ion  in terms of  configuration variables 

7.1. Algebra o f  observables  

The entire theory can also be rewritten in terms of field configurations only, without 
any use of field momenta. To keep a complete set of initial data, we have to replace the 

information which was contained in the momenta by the information carried by the field 
configuration on an adjacent E.  This way, we can describe the observable algebra by the 

field configurations over two consecutive space-like hyperplanes E t and Et+ 6, together 
with all the time-like links and plaquettes between them. In this formulation it is convenient 

to use the following generators of the algebra: 

r x = R 2 and Wx,x+~ = RxWx,x+fzRx+~ , 
X 

which, in terms of gauge-dependent fields, reads: 

Wx,x +~ = (Px exp ( igaAx ,x  +fz)fbx +~ . 

Of course, 

Wx+[z,x = Wx,x+fz • 

It is easy to obtain the following, complete set of commutation relations between these 

generators: 

, - 7  , 

, 7 r x  , 
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= _ a3 rx+O' 

rx+6, Wx,x+[~] 2 i h r  1 -- a3 Wx,x+O r x Wx,x+[~, 

[rx, Wx+O,x+6+[~] = 2ihr r _ l  -~-Wx,x+6 x+O Wx+6,x+6+k' 

[Wx,x+5, Wx'x+k ] _ 2ihr -~ wx,x +~, 

[Wx,x+ ~, W x+~] = O, 

[Wx,~+ ~, Wx+~,x+~+~] = O, 

[.Wx,x+6 ' Wx+8"x+5+k ] 2ihr 
- -  a3 Wx+6,x+6+i' 

[Wx+Lx+i+i ' Wx+6'x+b+k ] = 2ihr 7 Wx+Lx+k+i Wx+6'x+6+k 
- 1  1 

× rx+6+ i Wx+Lx+6+i rx+ ~' 

Wx+6,x+6+[~ Wx,x+ ~ = exp (ihg2ar-) Wx,x+[~ Wx+~),x+6+~, 

2ihr'~ r -  1 
Wx+O,x+O+ ~ Wx+Lx = e x p  \(ihg 2t-)a, Wx+Lx Wx'x+O a 3 } x Wx, x+6 

x rx-lOwx+O,x+O+[~ r-1. ^ x+O+k Wx+[q x+O+~ 

( x r-l̂ x+k Wx+k,x+ 6+~ a 3 

7.2. Second-order field equations 

Field equations may also be rewritten as second-order difference equations for the in- 

dependent set of configuration variables r and Wx,x+f~ described above. At every lattice 
site we will have an equation analogous to the Klein-Gordon-like equation (1.7) for the 
"matter" field r and at every lattice link an equation analogous to the Maxwell equation (1.7) 
for the "electromagnetic" field. 

First notice that the fourth formula of Eqs. (5.2) is already in a form very similar to 
the classical expression. We will express the momentum K in terms of the configuration 
variables using the definition (5.3) of Wx,x+ 6. Indeed, we have 

R2 ( iM; ih  ) Wx,x+6= x + r  K + +  4- a-7 " 

Taking the real and the imaginary parts we get 

K+ = 1 [ wx'x+6 + wx'x+5 -r 2 - r x  

and 

(7.1) 
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M+ _ 1 Wx,x+ 6 - Wx,x+O h 
x - r 2i a3 . ( 7 . 2 )  

In the same way we obtain 

1 [Wx,x-6+Wx,x-6 ] lWx,x-O-Wx,x-6  h 
K x . . . .  r and M -  =- 

r 2 x x r 2i a 3 " 

Substituting the above expressions for K to (5.2), we have 

1 [  wr'x+f~+wx'x+[* - rxj=0 (7.3) --V' (rx) "rl/Z + Z,~f,l̂  2 ' 
# 

which is the lattice version of  the first equation of  (1.7) for the quantum observables. 

] b  obtain the analog of  the second of  Eqs. (1.7), let us choose a space-like lattice 

link (x, x +/~). The last equation of  (5,2) is completely analogous to the classical ex- 

pression, so we merely rewrite it in another form: 

1_ Z Bx:Li - - 
a 

i 

1 1 W x , x +  ~ - Wx ,x+[~  
I D +  . + - D -  ^ = - g -  
r x,x+k r x,x+k a 2i 

To do the same for time-like links, we substitute (7.2) to the definition (4.7) of  M: 

(7.4) 

1 v-" D + 1 Wx,x+ 6 -- Wx,x+ 6 h 
a ~ x,x+~ : g r  2i ga 3 

1 - 1/2 tOx,x+O -- Wx,x+() r 1/2 =g--r  
r x 2 i  x 

Summarizing, we may write the expressions (7.4) and (7.5) in one formula: 

(7.5) 

gVV 1 r _ l / 2  Wx,x+[z - ~x,x+fi  r l /2  
Z. - a ~  fx:i,,~ = - g a ( # )  x Tll x ' 

P 

analogous to the second equation of (1.7), 

Finally, the value of  the field fx;~:~ may be expressed in terms of  r and w (up to 

2rrn/ga(lz)a(v)). For both /z and v being space-like, this is given simply by the con- 

straint (2.9). If one of  them is time-like, this is given by the second of Eqs. (5.4): 

• 2 r - 1  - 1  
e x p ( l h g  ~a) Wx+Lxrx Wx,x+6rx+ 6 

-1  -1  
xwx+6,.~+6+frx+6+~,W~+6+i,x+irx+f, = e x p ( - i g a r D  + ,) x,x +k ' 

or, equivalently 

exp(--ihg2~a)Wx,x+6r-)6wx+6,x+f+~rx-1+6+~ 

x w x +6+Lx +irx-liwx +k,xr.~ I --  exp (-igar\ D +x,x+~/. ] " 

The above equations are equivalent to the definition of  fu~ as the curl of  v u, up to a vortex 

carried by the gradient of  arg 4~ (see Eq. (1.6)). 



204 J. Kijowski, A. Thielmann/Journal of Geometry and Physics 19 (1996) 173-205 

8. Conclusions and perspectives 

Each step of the kinetic evolution is given by the unitary operator e irnkin , where 

a 3 ~  x R-1 K2+ Qx R - l q - - ~  D2 ^ 
x x,x+k " Hkin := -~ x x,k 

Similarly, each step of the potential evolution is given by the unitary operator e ir Hp°t , where 

Hpot:=a3~-~ V(R 2) 
X 

a x~k ( x R2 ^ + 2 RE + x+k -- 2RxRx+k 
W-1 ) a3 

Wx,x+T: + x,x+k + y ~  B2 ^ ^ 
2 - S  x;~j " 

x;k,l 

Passing to the limit r ~ 0 we obtain a finite-dimensional quantum mechanical system 

with the degrees of freedom described by the algebra Oz .  Due to the Trotter formula, the 

dynamics of the system is defined by the total Hamiltonian 

H ---- Hkin 4- Hpot . 

The Hamiltonian is manifestly positive. For a finite lattice one should first find its lowest- 
energy state, which plays the role of the physical vacuum. Because of the high non-linearity 
of the theory, only numerical analysis will probably be possible. The physical vacuum has 

nothing to do with the perturbative vacuum, which may be defined as a tensor product of 
the free-electromagnetic-vacuum and the free-matter-vacuum. For the sake of convenience 

one can subtract the vacuum energy from the Hamiltonian. 
Then, one has to renormalize the mass and possibly other physical parameters in the 

original potential V, i.e. to relate them with their physical values. To calculate the physical 

mass of the particles in our theory we cannot use the one-particle states as in the perturbative 
approach. Indeed, there is no "creation operator" in our theory, because of the super-selection 

rules, which are automatically fulfilled. Instead, the operator Wx,x+ ~ creates a particle 

carrying the charge - e  at x and an antiparticle carrying the charge +e  at x +/~. Therefore, 

one has to proceed as follows. Fix a pair of sites (x, y) c •. In the subspaces of all quantum 
states, such that Qx -- +e, Oy = -e,  and Q = 0 elsewhere, we find the state of the lowest 
energy E(x, y). The maximal value of the function E(x, y) with respect to x and y will be 
identified with twice the physical mass of the particles we want to describe. This value has 
to be fitted by the parameters of V. 

Having chosen appropriate parameters of the theory, one may further investigate the prop- 
erties of the Hamiltonian, possibly by numerical methods. In particular, dynamical problems 
may be solved discretizing again the time and using the unitary evolution developed in this 
paper. 

Finally, one has to check, whether or not the physical properties of the above system 
depend considerably on the volume and the spacing a of the lattice used. 
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A similar  p rogram for Quan tum Elec t rodynamics  with spinorial  mat ter  is now under  

invest igat ion and will  be presented  in another  paper. 
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